
Co�er Network

Initial Report // December 16, 2024

Final Report // January 16, 2025

Security Audit
Report

Co�er App API

Team Members

Jehad Baeth // Senior Security Auditor

Mukesh Jaiswal // Senior Security Auditor

2

Table of Contents

31.0 Scope

1.1 Technical Scope

42.0 Executive Summary

2.1 Schedule

2.2 Overview

2.3 Threat Model

2.4 Secure Implementation

2.5 Use of Dependencies

2.6 Tests

2.7 Project Documentation

53.0 Key Findings Table

64.0 Findings

4.1 FakeP2wshWitness Value Added by Default to the Witness Array

4.2 Insu�cient Validation for Public Keys

4.3 The and Functions Return an Incorrect Value of getTxVSize EstimatedGasFee vbytes

4.4 Incorrect Use of Equality in For Loop in and FunctionsGetP2wshVSize GetP2trVSize

4.5 Use of SHA1 for Unique Identi�er Generation

4.6 Insu�cient Signature Validation in Bitcoin PSBT Processing

4.7 Insu�cient PSBT Transaction Input and Output Validation

4.8 Lack of Size Validation for Hex-Encoded Taproot Script Components

4.9 Lack of Consistency Check Between Signed and Unsigned PSBTs

4.10 Incorrect Loop Condition Leading to In�ated Gas Fee Estimation

4.11 No Check for Length in and Functionspubkeyhash PayToPubKeyHashScript PayToWitnessPubKeyHashScript

4.12 Silent Failure in HD Path Parsing Function

155.0 Appendix A

5.1 Severity Rating De�nitions

5.2 Severity Rating De�nitions

176.0 Appendix B

6.1 Thesis Defense Disclaimer

Defense

Security Audit Report

Co�er Network

3

Defense is the security auditing arm of Thesis, Inc., the venture studio behind tBTC, Fold, Mezo, Acre, Taho,

Etcher, and Embody. At Defense, we �ght for the integrity and empowerment of the individual by

strengthening the security of emerging technologies to promote a decentralized future and user freedom.

Defense is the leading Bitcoin applied cryptography and security auditing �rm. Our team of security

auditors have carried out hundreds of security audits for decentralized systems across a number of

ecosystems including Bitcoin, Ethereum + EVMs, Stacks, Cosmos SDK, NEAR and more. We o�er our

services within a variety of technologies including smart contracts, bridges, cryptography, node

implementations, wallets and browser extensions, and dApps.

Defense will employ the Defense Audit Approach and Audit Process to the in scope service. In the event

that certain processes and methodologies are not applicable to the in scope services, we will indicate as

such in individual audit or design review SOWs. In addition, Thesis Defense provides clear guidance on

successful Security Audit Preparation.

Technical Scope

Repository: https://github.com/co�er-network/co�er-app-api/tree/defense-audit

Audit Commit: 1cedf8efbd9142906beda229cd43e4d3caa14be2

Ver�ciation Commit: f07a67e82323df286e25fba1de543dda220ee788

Files in Scope:

pkg/bitcoin/

address.go

constants.go

fee.go

network.go

psbt.go

rpcclient.go

runes.go

utils.go

pkg/wallet/

ledger/ledger.go

wallet.go

About Thesis Defense

Scope
Section 1.0

Defense

Security Audit Report

Co�er Network

https://thesis.co/defense
https://thesis.co/defense#team
https://medium.com/thesis-defense/thesis-defense-audit-approach-75949aab90fb
https://medium.com/thesis-defense/thesis-defense-audit-approach-75949aab90fb
https://medium.com/thesis-defense/maximizing-security-audit-success-a-comprehensive-guide-to-audit-preparation-16d43b09715d
https://github.com/coffer-network/coffer-app-api/tree/defense-audit

4

Schedule

This security audit was conducted from December 9, 2024 to December 16, 2024 by 2 security auditors for

a total of 2 person-weeks.

Overview

Co�er Network is a decentralized platform that provides a programmable Smart Account infrastructure for

Bitcoin that is intended to manage and stack Bitcoin e�ciently. During this review, our team audited the

implementation of the Co�er App APIs, implemented in Go.

Threat Model

We determined relevant areas of concern and attack vectors to guide our auditing investigation. We

investigated several vectors of attack that a malicious actor could attempt including:

Creating a valid script with invalid input, eg. A PSBT with a Timelock

Man-in-the-Middle(MITM) attack

Exploitation of insu�ciently secure cryptography

We looked for implementation errors that could lead to security vulnerabilities. We checked the

correctness of the calculation of transaction fees. We also checked that transaction data in general, and

the inputs and outputs of PSBTs speci�cally, are su�ciently validated. We used automated analysis tools

including Gosec , staticheck , golangci-lint .

Secure Implementation

In our audit we identi�ed several areas of improvement. We found instances of incorrect implementation.

We also found that the implementation lacks appropriate error handling.

We identi�ed a pattern of insu�cient validation in the handling of PSBTs. We also found an instance of

implemented functionality could be replaced by a battle tested library implementation, improving the

code.

There is code that is unused, and unreachable, in addition to untested.

Use of Dependencies

We did not identify any issues in the use of dependencies.

Tests

There are some tests implemented, however, given the limited scope of the audit, we were not able to run

or evaluate these tests.

Project Documentation

The implementation does not contain any code comments, and there was no project documentation

available for this audit. We recommend implementing comprehensive code comments that describe the

intended behavior of each function. We also recommend creating comprehensive project documentation

that users, developers, and auditors can use as a resource to learn about the application e�ciently.

Executive Summary
Section 2.0

Defense

Security Audit Report

Co�er Network

https://github.com/thesis/coffer_app_api/blob/1cedf8efbd9142906beda229cd43e4d3caa14be2/pkg/bitcoin/fee.go#L119

5

Issues Severity Status

ISSUE #1 FakeP2wshWitness Value Added by Default to the

Witness Array

ISSUE #2 Insu�cient Validation for Public Keys

ISSUE #3 The getTxVSize and EstimatedGasFee

Functions Return an Incorrect Value of vbytes

ISSUE #4 Incorrect Use of Equality in For Loop in

GetP2wshVSize and GetP2trVSize Functions

ISSUE #5 Use of SHA1 for Unique Identi�er Generation

ISSUE #6 Insu�cient Signature Validation in Bitcoin PSBT

Processing

ISSUE #7 Insu�cient PSBT Transaction Input and Output

Validation

ISSUE #8 Lack of Size Validation for Hex-Encoded Taproot

Script Components

ISSUE #9 Lack of Consistency Check Between Signed and

Unsigned PSBTs

ISSUE #10 Incorrect Loop Condition Leading to In�ated Gas

Fee Estimation

ISSUE #11 No Check for pubkeyhash Length in

PayToPubKeyHashScript and
PayToWitnessPubKeyHashScript Functions

ISSUE #12 Silent Failure in HD Path Parsing Function

Severity de�nitions can be found in Appendix A

Key Findings Table
Section 3.0

Defense

Security Audit Report

Co�er Network

6

We describe the security issues identi�ed during the security audit, along with their potential impact. We

also note areas for improvement and optimizations in accordance with best practices. This includes

recommendations to mitigate or remediate the issues we identify, in addition to their status before and

after the �x veri�cation.

ISSUE#1

FakeP2wshWitness Value Added by Default to the Witness Array

Location

/pkg/bitcoin/psbt.go#L343

Description

When calculating the gas fee, the witness value is updated by FakeP2wshWitness by default based on

the required signatures. However, it does not consider the speci�c type of script used for the witness. The

size of the witness can vary depending on the associated script.

For example, in the case of a P2TR (Pay-to-Taproot) script path spend, the witness size depends on

several factors:

The size of the leaf script

The number of script inputs

The depth of the leaf script in the script tree

For P2WPKH (Pay-to-Witness-PubKey-Hash), the witness size depends on the signature and the public

key. As a result, the witness length may exceed the expected total size of witness, causing the estimated

virtual size to be greater than the actual size.

Impact

The overestimated transaction size would result in increased transaction fees.

Recommendation

We recommend updating witness values based on the speci�c script they are associated with.

Veri�cation Status

The Co�er team stated that they use ‘FakeP2wshWitness’ because multi-sig address generated from

di�erent types of addresses (p2phk, p2sh-p2wpkh, p2wpkh, p2tr) will result in a di�erent length of witness

for each type. As such the longest witness is selected to occupy the position.

Findings
Section 4.0

Defense

Security Audit Report

Co�er Network

https://github.com/thesis/coffer_app_api/blob/1cedf8efbd9142906beda229cd43e4d3caa14be2/pkg/bitcoin/psbt.go#L343

7

ISSUE#2

Insu�cient Validation for Public Keys

Location

/pkg/bitcoin/address.go#L85

Description

The checkPubKeys function validates whether the number of public keys and the number of signers are

within the permissible limits. However, the function lacks a check to verify whether the public keys are in

compressed or uncompressed format.

In P2TR (Pay-to-Taproot) function implementation, all the public keys are mapped into an xonly format,

which ensures that all the keys are in compressed format. However, the implementation of the P2WSH

function is missing this check.

Impact

Accoding to BIP143, only compressed public keys are accepted in P2WPKH (Pay-to-Witness-PubKey-

Hash) and P2WSH (Pay-to-Witness-Script-Hash). Each public key passed to a sigop inside version 0

witness program must be a compressed key: the �rst byte MUST be either 0x02 or 0x03, and the size

MUST be 33 bytes. Transactions that break this rule will not be relayed or mined by default.

Using any other format such as uncompressed public key may lead to irrevocable fund loss.

Recommendation

We recommend that a check be added which only allows compressed keys.

ISSUE#3

The getTxVSize and EstimatedGasFee Functions Return an

Incorrect Value of vbytes

Location

pkg/bitcoin/fee.go#L106

pkg/bitcoin/psbt.go#L381�L383

Description

Virtual bytes are used to compare the fee rates between transactions. The virtual size of a transaction is

determined by dividing its weight by 4.

In this function, the virtual size is calculated as a precise fraction, but the math.Ceil function operation

is applied to round it up, yielding a rounded integer value.

Impact

The virtual size is a fractional value when computed accurately, but the getTxVSize function returns a

rounded integer value. This discrepancy leads to a di�erence between the original value and the returned

one, causing the user to pay an incorrect fee.Defense

Security Audit Report

Co�er Network

https://github.com/thesis/coffer_app_api/blob/1cedf8efbd9142906beda229cd43e4d3caa14be2/pkg/bitcoin/address.go#L85
https://github.com/thesis/coffer_app_api/blob/1cedf8efbd9142906beda229cd43e4d3caa14be2/pkg/bitcoin/fee.go#L106
https://github.com/thesis/coffer_app_api/blob/1cedf8efbd9142906beda229cd43e4d3caa14be2/pkg/bitcoin/psbt.go#L381-L383
https://en.bitcoin.it/wiki/Weight_units

8

Recommendation

To obtain the correct value and prevent precision loss, the following methods can be used:

Multiply the input by 10N (where N represents the desired number of decimal places), round the result, and

then divide it by 10^N.

Use external libraries such as shopspring/decimal for more precise calculations.

ISSUE#4

Incorrect Use of Equality in For Loop in GetP2wshVSize and

GetP2trVSize Functions

Location

pkg/bitcoin/fee.go#L118

/pkg/bitcoin/fee.go#L134

Description

The functions GetP2wshVSize and GetP2trVSize update the witnesses based on the number of

mRequired . However, during the iteration over the mRequired value, it uses an incorrect equality

check, which results in the addition of extra value to the witnesses.

for i := 0; i <= mRequired; i++

 { witnesses = append(witnesses, FakeP2TRWitness) }

Impact

The inclusion of extra values in the witnesses increases the total witness length, which will be di�erent

from the original witness length and will increase the transaction size and cost.

Recommendation

We recommend updating the equality condition.

for i := 0; i < mRequired; i++

 { witnesses = append(witnesses, FakeP2TRWitness) }

ISSUE#5

Use of SHA1 for Unique Identi�er Generation

Location

/pkg/bitcoin/address.go#L255�L257

Description

The Co�er App API codebase utilizes the SHA1 hashing algorithm to generate a unique identi�er from a list

of addresses and an address type. The function GetHashFromAddresses concatenates the addresses
Defense

Security Audit Report

Co�er Network

https://github.com/shopspring/decimal
https://github.com/thesis/coffer_app_api/blob/1cedf8efbd9142906beda229cd43e4d3caa14be2/pkg/bitcoin/fee.go#L118
https://github.com/thesis/coffer_app_api/blob/1cedf8efbd9142906beda229cd43e4d3caa14be2/pkg/bitcoin/fee.go#L134
https://github.com/thesis/coffer_app_api/blob/1cedf8efbd9142906beda229cd43e4d3caa14be2/pkg/bitcoin/address.go#L255-L257

9

and address type, then applies SHA1 to produce a hash. This hash is subsequently used in the

MultisigWalletByUnique function to query the existence of a wallet in the database.

While there is currently no known security impact associated with this implementation, the use of SHA1 is

generally discouraged due to its susceptibility to collision attacks. Although the speci�c context of this

function is outside the audit scope, it is important to consider the potential risks associated with using a

deprecated hashing algorithm in future developments or changes.

Impact

While no immediate security issues have been identi�ed, relying on a hashing algorithm that is known to

be weak could lead to vulnerabilities down the line, especially if the application evolves to handle more

sensitive data or if it is integrated with other systems.

Recommendation

Update the GetHashFromAddresses function to use SHA256 or SHA3 instead of SHA1. If there is a need

to maintain domain separation, consider using domain separation tags instead of deprecated hash

functions.

ISSUE#6

Insu�cient Signature Validation in Bitcoin PSBT Processing

Location

/pkg/wallet/ledger/ledger.go#L64

/pkg/bitcoin/psbt.go#L386

Description

In the current Bitcoin transaction processing implementation, the signature validation for PSBT lacks

comprehensive veri�cation against the secp256k1 elliptic curve cryptography standard. The

implementation potentially allows processing of PSBT inputs without rigorous cryptographic signature

validation, which could lead to the acceptance of malformed or unauthorized transaction signatures.

Speci�cally, the veri�cation process does not comprehensively ensure the signature is generated using

the secp256k1 curve parameters or check the signature’s integrity and authenticity, before propagating

the transaction to Bitcoin.

Impact

Inadequate signature validation could compromise the integrity and non-repudiation principles of Bitcoin

transactions, such a transaction would be rejected wasting gas.

Recommendation

We recommend implementing a robust signature validation mechanism using the btcutil and btcd

libraries. We also recommend leveraging Schnorr signature veri�cation

Veri�cation Status

The Co�er team stated that this check is veri�ed by the Bitcoin node.

Defense

Security Audit Report

Co�er Network

https://github.com/thesis/coffer_app_api/blob/1cedf8efbd9142906beda229cd43e4d3caa14be2/pkg/wallet/ledger/ledger.go#L64
https://github.com/thesis/coffer_app_api/blob/1cedf8efbd9142906beda229cd43e4d3caa14be2/pkg/bitcoin/psbt.go#L386
https://github.com/btcsuite/btcd/blob/e646d437e95bc2db4047803bca16bbb1c4209404/btcec/schnorr/signature.go#L226-L231

10

ISSUE#7

Insu�cient PSBT Transaction Input and Output Validation

Location

/pkg/bitcoin/psbt.go#L386

Description

The current implementation of the PSBT validation process lacks comprehensive checks that are

essential for preventing potential �nancial exploits. Speci�cally, the system fails to:

Comprehensively verify that total input amounts are greater than or equal to total output amounts

Prevent the creation of dust outputs that could potentially be used to manipulate transaction

economics

Impact

The identi�ed missing validations could potentially lead to:

Financial loss through crafted transactions that bypass input-output amount veri�cation

Creation of dust outputs that could be used in potential denial-of-service or economic

manipulation attacks

Increased attack surface for malicious actors attempting to exploit transaction validation

weaknesses

Recommendation

We recommend implementing a robust PSBT validation mechanism while utilizing battle-tested libraries

such as btcutil and btcd in order to achieve the following:

Implement strict input-output amount veri�cation

Validate input and output count ranges

Add dust output protection using standardized thresholds

Implement comprehensive error handling and logging

Veri�cation Status

The Co�er team stated that this check is veri�ed by the Bitcoin node.

ISSUE#8

Lack of Size Validation for Hex-Encoded Taproot Script

Components

Location

/pkg/bitcoin/psbt.go#L221�L249

Description

In the decodeP2trScript method of the PSBT builder, the implementation does not enforce size

constraints on key components of the Taproot script, which could potentially lead to processing
Defense

Security Audit Report

Co�er Network

https://github.com/thesis/coffer_app_api/blob/1cedf8efbd9142906beda229cd43e4d3caa14be2/pkg/bitcoin/psbt.go#L386
https://github.com/thesis/coffer_app_api/blob/1cedf8efbd9142906beda229cd43e4d3caa14be2/pkg/bitcoin/psbt.go#L221-L249

11

malformed or oversized input data. The vulnerable code segment decodes hex-encoded strings for the

following components without performing proper size validation:

witnessScript : No validation against the Bitcoin network’s maximum witness script size of

4,000 byte

internalKey : No enforcement of public key size limits. Should be constrained to 33 bytes for

compressed keys and 65 bytes for uncompressed keys.

tapHash : No validation of the hash size, which should be consistently 32 bytes (256 bits)

controlBlockBytes : Potential for processing control blocks that may exceed practical network

limits

Impact

While the risk is not high, it represents a weakness that could be exploited by malicious actors to disrupt

transaction processing through memory exhaustion through large input processing.

Recommendation

We recommend that the decodeP2trScript function be modi�ed to include validation that adheres to

the bitcoin limits.

ISSUE#9

Lack of Consistency Check Between Signed and Unsigned

PSBTs

Location

/pkg/bitcoin/psbt.go#L386

Description

The existing implementation fails to perform thorough consistency checks between unsigned and signed

PSBTs. In other words, there is insu�cient validation of transaction Input counts and details, and Output

count and details during the PSBT signing process.

Without robust consistency veri�cation, there is a risk of undetected modi�cations to transaction inputs

and/or potential manipulation of transaction outputs.

Impact

Unauthorized modi�cation of transaction details that could lead to unintended behavior.

Recommendation

We recommend verifying the integrity of transactions by checking the consistency between a signed

transaction and its corresponding raw transaction. Verify that the input counts match, with an “Input count

mismatch” error returned if they do not. Next, compare each input using a helper function, with an error

provided for any discrepancies.

Defense

Security Audit Report

Co�er Network

https://github.com/thesis/coffer_app_api/blob/1cedf8efbd9142906beda229cd43e4d3caa14be2/pkg/bitcoin/psbt.go#L386

12

The output counts should also be checked for consistency, returning an “Output count mismatch” if they

di�er. Finally, each output’s value and script should be compared, with an error returned for any

mismatches.

function verifyTransactionConsistency(signedTransaction, rawTransaction):

 // Step 1: Check Input Count

 if inputCount(signedTransaction) != inputCount(rawTransaction):

 return "Input count mismatch"

 // Step 2: Compare Inputs

 for i from 0 to inputCount(signedTransaction) - 1:

 if not compareInputs(signedTransaction.inputs[i], rawTransaction.inputs[i]):

 return "Input mismatch at index " + i

 // Step 3: Check Output Count

 if outputCount(signedTransaction) != outputCount(rawTransaction):

 return "Output count mismatch"

 // Step 4: Compare Outputs

 for i from 0 to outputCount(signedTransaction) - 1:

 if signedTransaction.outputs[i].value != rawTransaction.outputs[i].value or

 signedTransaction.outputs[i].script != rawTransaction.outputs[i].script:

 return "Output mismatch at index " + i

 // Return Success

 return "Transaction consistency verified"

Veri�cation Status

The Co�er team stated that this check is veri�ed by the Bitcoin node.

ISSUE#10

Incorrect Loop Condition Leading to In�ated Gas Fee Estimation

Location

/pkg/bitcoin/psbt.go#L342

Description

The code contains a loop that is responsible for generating witnesses based on the

requiredSignature parameter. The current implementation uses the following loop condition:

for i := 0; i <= requiredSignature; i++

This condition results in the creation of requiredSignature + 1 witnesses, which is likely more than

intended. The extra iteration can lead to in�ated gas fee estimations when the function is executed on the

blockchain, as the gas fees are calculated based on the number of operations performed.

Impact

The gas fees estimate provided is in�ated.

Recommendation

We recommend that the referenced loop condition be modi�ed to ensure that the correct number of

witnesses is generated.
Defense

Security Audit Report

Co�er Network

https://github.com/thesis/coffer_app_api/blob/1cedf8efbd9142906beda229cd43e4d3caa14be2/pkg/bitcoin/psbt.go#L342

13

ISSUE#11

No Check for pubkeyhash Length in

PayToPubKeyHashScript and

PayToWitnessPubKeyHashScript Functions

Location

/pkg/bitcoin/utils.go#L11

/pkg/bitcoin/utils.go#L30

Description

The functions PayToPubKeyHashScript and PayToWitnessPubKeyHashScript build scripts by

adding the appropriate opcodes and public key hash value. However, they do not enforce a check on the

length of the public key hash. If the public key hash length is not 20 bytes, the script validation will fail

when executed.

For example, in the case of P2PKH, the original public key is duplicated using OP_DUP and then hashed

with OP_HASH160 . The resulting hashed value is compared with the public key hash in the

ScriptPubKey and validated using OP_EQUALVERIFY . If the public key hash length is incorrect, the

comparison will fail, causing the validation to fail since the hashed value will not match.

Impact

If the script validation fails, the transaction will be considered invalid and rejected by the Bitcoin network.

Recommendation

We recommend enforcing the check for pubkeyhash length of 20 bytes.

ISSUE#12

Silent Failure in HD Path Parsing Function

Location

/pkg/bitcoin/psbt.go#L283�L308

Description

The ParseHDPath function overlooks some potential edge cases that may lead to a silent failuer. For

example the malformed HDPAth m/44'/0'/0'/0/0/0 will not return an error as it should. Furthermore,

the current implemention does not trim whitespaces, which may also lead to a silent failure.

Impact

The in�ated gas fees may deter users from executing transactions.

Recommendation

We recommend implementing input validation to verify that the HD path starts with ‘m’, has the correct

structure, and contains valid index values. Additionally, the function should be modi�ed to return explicitDefense

Security Audit Report

Co�er Network

https://github.com/thesis/coffer_app_api/blob/1cedf8efbd9142906beda229cd43e4d3caa14be2/pkg/bitcoin/utils.go#L11
https://github.com/thesis/coffer_app_api/blob/1cedf8efbd9142906beda229cd43e4d3caa14be2/pkg/bitcoin/utils.go#L30
https://github.com/thesis/coffer_app_api/blob/1cedf8efbd9142906beda229cd43e4d3caa14be2/pkg/bitcoin/psbt.go#L283-L308

14

error messages for invalid paths instead of failing silently.

We also recommended trimming the leading and trailing whitespace from the input path to prevent silent

failures. Lastly, we recommend looking into the parsing logic from the go-ethereum library, which could

provide improved reliability.

Defense

Security Audit Report

Co�er Network

https://github.com/ethereum/go-ethereum/blob/293a300d64be3d9a1c2cc92c26fcff4089deadcd/accounts/hd.go#L68-L118

15

Severity Rating De�nitions

At Defense by Thesis, we utilize the Immune� Vulnerability Severity Classi�cation System - v2.3.

Severity Rating De�nitions

At Thesis Defense, we utilize the Immune� Vulnerability Severity Classi�cation System - v2.3.

Severity De�nition

Execute arbitrary system commands

Retrieve sensitive data/�les from a running server, such as:

/etc/shadow

database passwords

blockchain keys (this does not include non-sensitive

environment variables, open source code, or usernames)

Taking down the application/website

Taking down the NFT URI

Taking state-modifying authenticated actions (with or without blockchain

state interaction) on behalf of other users without any interaction by that

user, such as:

Changing registration information

Commenting

Voting

Making trades

Withdrawals, etc.

Changing the NFT metadata

Subdomain takeover with already-connected wallet interaction

Direct theft of user funds Malicious interactions with an already-

connected wallet, such as:

Modifying transaction arguments or parameters

Substituting contract addresses

Submitting malicious transactions

Direct theft of user NFTs

Injection of malicious HTML or XSS through NFT metadata

Injecting/modifying the static content on the target application

without JavaScript (persistent), such as:

HTML injection without JavaScript

Replacing existing text with arbitrary text

Arbitrary �le uploads, etc.

Changing sensitive details of other users (including modifying

browser local storage) without already-connected wallet interaction

and with up to one click of user interaction, such as:

Email or password of the victim, etc.

Improperly disclosing con�dential user information, such as:

Email address

Phone number

Physical address, etc.

Appendix A
Section 5.0

Defense

Security Audit Report

Co�er Network

https://immunefi.com/immunefi-vulnerability-severity-classification-system-v2-3/
https://immunefi.com/immunefi-vulnerability-severity-classification-system-v2-3/

16

PSubdomain takeover without already-

connected wallet interaction

Changing non-sensitive details of other users (including modifying

browser local storage) without already-connected wallet

interaction and with up to one click of user interaction, such as:

Changing the �rst/last name of user

Enabling/disabling noti�cations

Injecting/modifying the static content on the target

application without JavaScript (re�ected), such as:

Re�ected HTML injection

Loading external site data

Redirecting users to malicious websites (open

redirect)

>

Changing details of other users (including modifying browser local

storage) without already-connected wallet interaction and with

signi�cant user interaction, such as:

Iframing leading to modifying the backend/browser state

(must demonstrate impact with PoC)

Taking over broken or expired outgoing links, such as:

Social media handles, etc

Temporarily disabling user to access target site,

such as:

Locking up the victim from login

Cookie bombing, etc.

We make note of issues of no severity that re�ect best practice

recommendations or opportunities for optimization, including, but

not limited to, gas optimization, the divergence from standard

coding practices, code readability issues, the incorrect use of

dependencies, insu�cient test coverage, or the absence of

documentation or code comments.

Defense

Security Audit Report

Co�er Network

17

Thesis Defense Disclaimer

Defense conducts its security audits and other services provided based on agreed-upon and speci�c

scopes of work (SOWs) with our Customers. The analysis provided in our reports is based solely on the

information available and the state of the systems at the time of review. While Thesis Defense strives to

provide thorough and accurate analysis, our reports do not constitute a guarantee of the project’s security

and should not be interpreted as assurances of error-free or risk-free project operations. It is imperative to

acknowledge that all technological evaluations are inherently subject to risks and uncertainties due to the

emergent nature of cryptographic technologies.

Our reports are not intended to be utilized as �nancial, investment, legal, tax, or regulatory advice, nor

should they be perceived as an endorsement of any particular technology or project. No third party should

rely on these reports for the purpose of making investment decisions or consider them as a guarantee of

project security.

Links to external websites and references to third-party information within our reports are provided solely

for the user’s convenience. Thesis Defense does not control, endorse, or assume responsibility for the

content or privacy practices of any linked external sites. Users should exercise caution and independently

verify any information obtained from third-party sources.

The contents of our reports, including methodologies, data analysis, and conclusions, are the proprietary

intellectual property of Thesis Defense and are provided exclusively for the speci�ed use of our

Customers. Unauthorized disclosure, reproduction, or distribution of this material is strictly prohibited

unless explicitly authorized by Thesis Defense. Thesis Defense does not assume any obligation to update

the information contained within our reports post-publication, nor do we owe a duty to any third party by

virtue of making these analyses available.

Appendix B
Section 6.0

Defense

Security Audit Report

Co�er Network

	Security Audit Report
	Coffer Network
	Coffer App API

	Table of Contents
	About Thesis Defense
	1
Scope
	Technical Scope

	2
Executive Summary
	Schedule
	Overview
	Threat Model
	Secure Implementation
	Use of Dependencies
	Tests
	Project Documentation

	3
Key Findings Table
	4
Findings
	FakeP2wshWitness Value Added by Default to the Witness Array
	Location
	Description
	Impact
	Recommendation
	Verification Status

	Insufficient Validation for Public Keys
	Location
	Description
	Impact
	Recommendation

	The getTxVSize and EstimatedGasFee Functions Return an Incorrect Value of vbytes
	Location
	Description
	Impact
	Recommendation

	Incorrect Use of Equality in For Loop in GetP2wshVSize and GetP2trVSize Functions
	Location
	Description
	Impact
	Recommendation

	Use of SHA1 for Unique Identifier Generation
	Location
	Description
	Impact
	Recommendation

	Insufficient Signature Validation in Bitcoin PSBT Processing
	Location
	Description
	Impact
	Recommendation
	Verification Status

	Insufficient PSBT Transaction Input and Output Validation
	Location
	Description
	Impact
	Recommendation
	Verification Status

	Lack of Size Validation for Hex-Encoded Taproot Script Components
	Location
	Description
	Impact
	Recommendation

	Lack of Consistency Check Between Signed and Unsigned PSBTs
	Location
	Description
	Impact
	Recommendation
	Verification Status

	Incorrect Loop Condition Leading to Inflated Gas Fee Estimation
	Location
	Description
	Impact
	Recommendation

	No Check for pubkeyhash Length in PayToPubKeyHashScript and PayToWitnessPubKeyHashScript Functions
	Location
	Description
	Impact
	Recommendation

	Silent Failure in HD Path Parsing Function
	Location
	Description
	Impact
	Recommendation

	5
Appendix A
	Severity Rating Definitions
	Severity Rating Definitions

	6
Appendix B
	Thesis Defense Disclaimer

