
Coffer Network

Initial Report // January 10, 2025

Final Report // January 23, 2025

Security Audit
Report

Coffer Smart Contracts

Team Members

Ahmad Jawid Jamiulahmadi // Senior Security Auditor

Mukesh Jaiswal // Senior Security Auditor

2

Table of Contents

31.0 Scope

1.1 Technical Scope

42.0 Executive Summary

2.1 Schedule

2.2 Overview

2.3 Threat Model

2.4 Secure Implementation

2.5 Tests

2.6 Project Documentation

53.0 Key Findings Table

64.0 Findings

4.1 Function Decreases the AllowanceincreaseAllowance

4.2 Event Emits an Incorrect Value

4.3 Duplicate Events Can be Emitted in FunctionwipeFrozenAddress

4.4 Important Protocol Privileged Addresses Can be Frozen

4.5 Incorrect Use of Access Role in FunctionwipeFrozenAddress

4.6 Address With Zero Balance Can be Frozen

4.7 Duplicate Functions

4.8 No Constructor Implemented in Smart Contracts

4.9 Implement Custom Errors to Save Gas

4.10 Privileged Addresses Can Be Set to Existing Values

4.11 Unlock Pragma Version

155.0 Appendix A

5.1 Severity Rating Definitions

166.0 Appendix B

6.1 Thesis Defense Disclaimer

Defense

Security Audit Report

Coffer Network

3

Defense is the security auditing arm of Thesis, Inc., the venture studio behind tBTC, Fold, Mezo, Acre, Taho,

Etcher, and Embody. At Defense, we fight for the integrity and empowerment of the individual by

strengthening the security of emerging technologies to promote a decentralized future and user freedom.

Defense is the leading Bitcoin applied cryptography and security auditing firm. Our team of security

auditors have carried out hundreds of security audits for decentralized systems across a number of

ecosystems including Bitcoin, Ethereum + EVMs, Stacks, Cosmos SDK, NEAR and more. We offer our

services within a variety of technologies including smart contracts, bridges, cryptography, node

implementations, wallets and browser extensions, and dApps.

Defense will employ the Defense Audit Approach and Audit Process to the in scope service. In the event

that certain processes and methodologies are not applicable to the in scope services, we will indicate as

such in individual audit or design review SOWs. In addition, Thesis Defense provides clear guidance on

successful Security Audit Preparation.

Technical Scope

Repository: https://github.com/coffer-network/coffer-smart-account/compare/defense-audit

Audit Commit: 47ca7cd1af3497b68836c6937a441ff64b305be7

Verfication Commit: b34df60c3a4cfc37e62aebda240ff8c1cc3e4ee9

Files in Scope:

Interface/ICofferErc20.sol

Interface/ICofferManageErc20.sol

Interface/IOwnerable.sol

Interface/IFreezable.sol

Interface/IPausable.sol

CofferErc20.sol

CofferManageErc20.sol

Freezable.sol

Ownerable.sol

Pausable.sol

About Thesis Defense

Scope
Section 1.0

Defense

Security Audit Report

Coffer Network

https://thesis.co/defense
https://thesis.co/defense#team
https://medium.com/thesis-defense/thesis-defense-audit-approach-75949aab90fb
https://medium.com/thesis-defense/thesis-defense-audit-approach-75949aab90fb
https://medium.com/thesis-defense/maximizing-security-audit-success-a-comprehensive-guide-to-audit-preparation-16d43b09715d
https://github.com/coffer-network/coffer-smart-account/compare/defense-audit

4

Schedule

This security audit was conducted from January 7, 2025 to January 10, 2025 by 2 security auditors for a

total of 1 person-week.

Overview

The Coffer Network smart contract is an ERC-20 token that tracks the Bitcoin balance of users stored on

the Bitcoin Network. This tracked Bitcoin generates yield over time, and the accrued yield is distributed to

the end users.

Threat Model

As part of our threat model, we conducted a thorough review to confirm that the token contract adheres to

the ERC-20 token standard. We also verified that any customizations or modifications introduced to the

standard did not introduce security vulnerabilities or compromise the integrity of the token. In addition, we

examined the contract for compliance with general best practices for Solidity smart contract

development, ensuring that the code follows recommended security patterns and minimizes potential

risks.

Secure Implementation

In our code review we found that security has been taken into consideration by adhering to the ERC-20

token standard and implementing appropriate access control. However, we identified issues whereby the

increaseAllowance function fails to correctly increase the allowance (Issue 1). Certain events are not

emitted properly (Issue 2, Issue 3). Additionally, the contracts allow freezing of important protocol

privileged addresses (Issue 4). Furthermore, an incorrect access modifier in the wipeFrozenAddress

function grants the Pauser role more privileges than intended, beyond just pausing and unpausing the

smart contract (Issue 5).

We also identified areas of improvement in terms of adhering to Solidity best practices (Issue 7, Issue 8,

Issue 9, Issue 11).

Tests

There are not tests implemented for the smart contract. We recommend implementing comprehensive

tests which help identify implementation errors that could lead to security vulnerabilities.

Project Documentation

There was no external project documentation available for this review, but the code comments provided

were generally sufficient to understand the intended behavior of the code. However, one of the comments

for a function was inaccurate.

Executive Summary
Section 2.0

Defense

Security Audit Report

Coffer Network

https://github.com/coffer-network/coffer-smart-account/blob/5a0d443626c0a025a6e1fd2b5f062bae49776387/packages/hardhat/contracts/core/Freezable.sol#L62

5

Issues Severity Status

ISSUE #1 increaseAllowance Function Decreases the

Allowance

ISSUE #2 Event Emits an Incorrect Value

ISSUE #3 Duplicate Events Can be Emitted in

wipeFrozenAddress Function

ISSUE #4 Important Protocol Privileged Addresses Can be

Frozen

ISSUE #5 Incorrect Use of Access Role in

wipeFrozenAddress Function

ISSUE #6 Address With Zero Balance Can be Frozen

ISSUE #7 Duplicate Functions

ISSUE #8 No Constructor Implemented in Smart Contracts

ISSUE #9 Implement Custom Errors to Save Gas

ISSUE #10Privileged Addresses Can Be Set to Existing Values

ISSUE #11 Unlock Pragma Version

Severity definitions can be found in Appendix A

Key Findings Table
Section 3.0

Defense

Security Audit Report

Coffer Network

6

We describe the security issues identified during the security audit, along with their potential impact. We

also note areas for improvement and optimizations in accordance with best practices. This includes

recommendations to mitigate or remediate the issues we identify, in addition to their status before and

after the fix verification.

ISSUE#1

increaseAllowance Function Decreases the Allowance

Location

contracts/core/CofferErc20.sol#L143

Description

The increaseAllowance function in the CofferErc20 smart contract mistakenly uses the -

operator instead of the + operator when calculating the new allowance, causing the allowance to

decrease instead of increase.

Impact

The spender cannot successfully transfer the intended token amount from the owner’s account because

the necessary allowance has not been properly set.

Recommendation

We recommend replacing the - operator with the + operator in the referenced calculation to ensure

the allowance is correctly increased.

Findings
Section 4.0

Defense

Security Audit Report

Coffer Network

https://github.com/coffer-network/coffer-smart-account/blob/5a0d443626c0a025a6e1fd2b5f062bae49776387/packages/hardhat/contracts/core/CofferErc20.sol#L143

7

ISSUE#2

Event Emits an Incorrect Value

Location

contracts/core/Pausable.sol#L39

contracts/core/Freezable.sol#L31

contracts/core/Ownerable.sol#L35

contracts/core/CofferManageErc20.sol#L73

Description

The referenced events are triggered whenever a critical access role is updated, such as when a new

pauser is accepted. For example, the following function emits the PauserTransferred event.

function acceptPauser() external {

 require(pendingPauser_ == msg.sender, "cannot accept pauser");

pauser = pendingPauser_;

emit PauserTransferred(pauser, pendingPauser_);

pendingPauser_ = address(0);

}

However, before the event is emitted, the value of pauser is set to pendingPauser_ , causing the event

to have two identical values. This issue arises because the function fails to retain the value of the previous

pauser when updating to the new one.

Impact

It creates challenges in effectively tracking critical role updates off-chain.

Recommendation

We recommend emitting the event before the update of the role (e.g., pauser value) or storing the old

role (e.g., pauser value) value in a separate variable and then emitting the event as written in the two

code snippets below for the pauser role. Emitting the event before updating the pauser :

function acceptPauser() external {

 require(pendingPauser_ == msg.sender, "cannot accept pauser");

 emit PauserTransferred(pauser, pendingPauser_);

pauser = pendingPauser_;

pendingPauser_ = address(0);

}

Storing the old pauser value in a separate variable and then emitting the event:

function acceptPauser() external {

 require(pendingPauser_ == msg.sender, "cannot accept pauser");

 address old_owner = pauser;

pauser = pendingPauser_;

emit PauserTransferred(old_owner, pauser);

pendingPauser_ = address(0);

}

Defense

Security Audit Report

Coffer Network

https://github.com/coffer-network/coffer-smart-account/blob/5a0d443626c0a025a6e1fd2b5f062bae49776387/packages/hardhat/contracts/core/Pausable.sol#L39
https://github.com/coffer-network/coffer-smart-account/blob/5a0d443626c0a025a6e1fd2b5f062bae49776387/packages/hardhat/contracts/core/Freezable.sol#L31
https://github.com/coffer-network/coffer-smart-account/blob/5a0d443626c0a025a6e1fd2b5f062bae49776387/packages/hardhat/contracts/core/Ownerable.sol#L35
https://github.com/coffer-network/coffer-smart-account/blob/5a0d443626c0a025a6e1fd2b5f062bae49776387/packages/hardhat/contracts/core/CofferManageErc20.sol#L73

8

ISSUE#3

Duplicate Events Can be Emitted in wipeFrozenAddress
Function

Location

contracts/core/CofferManageErc20.sol#L132

Description

The wipeFrozenAddress function reduces the balance of a frozen address to zero and emits three

events: FrozenAccountWiped , SupplyDecreased , and Transfer . However, since the function does

not verify whether the frozen address has a non-zero balance, it can be called repeatedly, leading to the

emission of duplicate events.

 function wipeFrozenAddress(address _addr) public onlyPauser whenNotPaused {

 require(frozen[_addr], "address is not frozen");

uint256 _balance = balances[_addr];

 balances[_addr] = 0;

 totalSupply_ = totalSupply_ - _balance;

emit FrozenAccountWiped(_addr);

emit SupplyDecreased(_addr, _balance);

emit Transfer(_addr, address(0), _balance);

}

Impact

This can lead to external entities misinterpreting the events, as they may receive duplicate information,

resulting in unintended behavior or faulty processing.

Recommendation

We recommend adding the following check at the start of the wipeFrozenAddress function.

 require(balances[_addr] > 0, “error message”);

Defense

Security Audit Report

Coffer Network

https://github.com/coffer-network/coffer-smart-account/blob/5a0d443626c0a025a6e1fd2b5f062bae49776387/packages/hardhat/contracts/core/CofferManageErc20.sol#L132

9

ISSUE#4

Important Protocol Privileged Addresses Can be Frozen

Location

contracts/core/Freezable.sol#L45

Description

The freeze function in the Freezable smart contract is responsible for freezing an address, but it

lacks a check to prevent freezing privileged addresses such as the supplyController . If the

supplyController address is frozen and the wipeFrozenAddress function is called before it is

unfrozen, the balance of the supplyController could be reduced to zero.

function freeze(address _addr) public onlyFreezer {

 require(!frozen[_addr], "address already frozen");

 frozen[_addr] = true;

AccountFrozen(_addr);

}

Impact

Freezing privileged addresses, such as the supplyController , prevents them from transferring funds.

Additionally, the wipeFrozenAddress function can set their balances to zero.

Recommendation

We recommend implementing a check to prevent the freezing of privileged addresses.

Verification Status

The Coffer team stated that they intend to address this issue in the future.

Defense

Security Audit Report

Coffer Network

https://github.com/coffer-network/coffer-smart-account/blob/5a0d443626c0a025a6e1fd2b5f062bae49776387/packages/hardhat/contracts/core/Freezable.sol#L45

10

ISSUE#5

Incorrect Use of Access Role in wipeFrozenAddress Function

Location

contracts/core/CofferManageErc20.sol#L132

Description

The wipeFrozenAddress function uses the onlyPauser access modifier, which is intended to allow

only pausing and unpausing of the contract. However, in this case, it is also used to reduce the frozen

address balance to zero.

function wipeFrozenAddress(address _addr) public onlyPauser whenNotPaused {

 require(frozen[_addr], "address is not frozen");

 uint256 _balance = balances[_addr];

 balances[_addr] = 0;

 totalSupply_ = totalSupply_ - _balance;

 emit FrozenAccountWiped(_addr);

 emit SupplyDecreased(_addr, _balance);

 emit Transfer(_addr, address(0), _balance);

 }

Impact

Using the onlyPauser modifier in the wipeFrozenAddress function expands the Pauser’s privileges

beyond contract pausing, which could lead to security risks, such as the accidental or malicious wiping of

balances. It also violates the principle of least privilege, centralizes control, and can cause confusion in

the contract’s behavior.

Recommendation

We suggest restricting this function to either Freezer or Owner .

ISSUE#6

Address With Zero Balance Can be Frozen

Location

contracts/core/Freezable.sol#L45

Description

freeze function in the Freezable smart contract can freeze an address with zero balance having no

effect on the management of blacklisted addresses balances.

Impact

None.

Defense

Security Audit Report

Coffer Network

https://github.com/coffer-network/coffer-smart-account/blob/5a0d443626c0a025a6e1fd2b5f062bae49776387/packages/hardhat/contracts/core/CofferManageErc20.sol#L132
https://github.com/coffer-network/coffer-smart-account/blob/5a0d443626c0a025a6e1fd2b5f062bae49776387/packages/hardhat/contracts/core/Freezable.sol#L45

11

Recommendation

We recommend adding a check to prevent freezing an address with zero balance.

ISSUE#7

Duplicate Functions

Location

contracts/core/CofferManageErc20.sol#L140C1-L150

contracts/core/Pausable.sol#L29-L33

contracts/core/Freezable.sol#L21-L25

Description

Currently, there are two ways in which privileged roles Pauser and and Freezer can be updated. The first

method allows these roles to assign new roles themselves, while the second method allows the Owner to

assign the values of pendingPauser_ , pendingFreezer_ . This creates redundancy in the process,

leading to duplicate functionality.

Impact

None.

Recommendation

We recommend moving the transfer pauser and transfer freezer functionality to the CofferERC20 smart

contract and merging them with the setPauser and setFreezer functions respectively to prevent

duplicate code. Additionally, we recommend using a modifier that verifies the Pauser or Owner role when

setting the pendingPauser_ , and a modifier that verifies Freezer or Owner role when setting the

pendingFreezer_ .

Verification Status

The Coffer team stated that they intend to address this issue in the future.

Defense

Security Audit Report

Coffer Network

https://github.com/coffer-network/coffer-smart-account/blob/5a0d443626c0a025a6e1fd2b5f062bae49776387/packages/hardhat/contracts/core/CofferManageErc20.sol#L140C1-L150
https://github.com/coffer-network/coffer-smart-account/blob/5a0d443626c0a025a6e1fd2b5f062bae49776387/packages/hardhat/contracts/core/Pausable.sol#L29-L33
https://github.com/coffer-network/coffer-smart-account/blob/5a0d443626c0a025a6e1fd2b5f062bae49776387/packages/hardhat/contracts/core/Freezable.sol#L21-L25

12

ISSUE#8

No Constructor Implemented in Smart Contracts

Location

contracts/core/Freezable.sol#L7

contracts/core/Ownerable.sol

contracts/core/Pausable.sol

Description

Contracts Pausable , Freezable , and Ownerable do not have constructors to initialize the contracts’

state variables pauser , freezer , and owner , respectively, rather they are set in the CofferErc20

smart contract constructor instead. It is considered best practice to initialize a smart contract’s state

variables in its own constructor. Ideally, state variables should be initialized in the parent contract’s

constructor, especially if they are essential for the contract’s logic. This ensures that the state is set

consistently for all contracts that inherit from the parent contract.

Inheritance Chain Complexity: If the state variable is only set in the child contract’s constructor, it can

create an unclear initialization order. Reliance on Child Constructor: If the child contract fails to correctly

initialize the state variable, the state variable will remain uninitialized or incorrectly set, which can break

the contract’s logic.

Impact

None.

Recommendation

We recommend creating a constructor for each of the aforementioned contracts and setting the state

variables in their respective constructor with a default value or via input parameters.

ISSUE#9

Implement Custom Errors to Save Gas

Location

Non-exhaustive:

contracts/core/CofferManageErc20.sol#L143

contracts/core/CofferManageErc20.sol#L133

contracts/core/CofferManageErc20.sol#L58

Description

The above-referenced statements use require and revert string messages for error handling.

However, using a revert with a custom error, instead of a string error message, optimizes gas costs.

Defense

Security Audit Report

Coffer Network

https://github.com/coffer-network/coffer-smart-account/blob/5a0d443626c0a025a6e1fd2b5f062bae49776387/packages/hardhat/contracts/core/Freezable.sol#L7
https://github.com/coffer-network/coffer-smart-account/blob/defense-audit/packages/hardhat/contracts/core/Ownerable.sol
https://github.com/coffer-network/coffer-smart-account/blob/defense-audit/packages/hardhat/contracts/core/Pausable.sol
https://github.com/coffer-network/coffer-smart-account/blob/5a0d443626c0a025a6e1fd2b5f062bae49776387/packages/hardhat/contracts/core/CofferManageErc20.sol#L143
https://github.com/coffer-network/coffer-smart-account/blob/5a0d443626c0a025a6e1fd2b5f062bae49776387/packages/hardhat/contracts/core/CofferManageErc20.sol#L133
https://github.com/coffer-network/coffer-smart-account/blob/5a0d443626c0a025a6e1fd2b5f062bae49776387/packages/hardhat/contracts/core/CofferManageErc20.sol#L58

13

Impact

None.

Recommendation

We recommend defining and using custom errors as described in the Solidity Documentation.

ISSUE#10

Privileged Addresses Can Be Set to Existing Values

Location

contracts/core/Ownerable.sol#L26

contracts/core/Pausable.sol#L29

contracts/core/Freezable.sol#L21

Description

Functions transferOwner , transferPauser , and transferFreezer can transfer a privilege to the

same address performing unnecessary and misleading action.

Impact

None.

Recommendation

We recommend preventing setting a privilege to the same address by adding a check in the

aforementioned functions.

ISSUE#11

Unlock Pragma Version

Location

contracts/core

Description

When using the pragma directive in Solidity, it is essential to specify the exact version of the Solidity

compiler that your smart contract is compatible with. This practice, known as locking the pragma, ensures

that your contract is compiled and executed as intended, avoiding potential issues caused by compiler

version differences.

Impact

None.

Defense

Security Audit Report

Coffer Network

https://docs.soliditylang.org/en/latest/contracts.html#custom-errors
https://github.com/coffer-network/coffer-smart-account/blob/5a0d443626c0a025a6e1fd2b5f062bae49776387/packages/hardhat/contracts/core/Ownerable.sol#L26
https://github.com/coffer-network/coffer-smart-account/blob/5a0d443626c0a025a6e1fd2b5f062bae49776387/packages/hardhat/contracts/core/Pausable.sol#L29
https://github.com/coffer-network/coffer-smart-account/blob/5a0d443626c0a025a6e1fd2b5f062bae49776387/packages/hardhat/contracts/core/Freezable.sol#L21
https://github.com/coffer-network/coffer-smart-account/tree/5a0d443626c0a025a6e1fd2b5f062bae49776387/packages/hardhat/contracts/core

14

Recommendation

We recommend specifying the most recent, exact version of the Solidity compiler.

Defense

Security Audit Report

Coffer Network

15

Severity Rating Definitions

At Defense by Thesis, we utilize the Immunefi Vulnerability Severity Classification System - v2.3.

Severity Definition

Manipulation of governance voting result deviating from voted

outcome and resulting in a direct change from intended effect of

original results

Direct theft of any user funds, whether at-rest or in-motion, other

than unclaimed yield

Direct theft of any user NFTs, whether at-rest or in-motion, other

than unclaimed royalties

Permanent freezing of funds

Permanent freezing of NFTs

Unauthorized minting of NFTs

Predictable or manipulable RNG that results in abuse of the

principal or NFT

Unintended alteration of what the NFT represents (e.g. token URI,

payload, artistic content)

Protocol insolvency

Theft of unclaimed yield

Theft of unclaimed royalties

Permanent freezing of unclaimed yield

Permanent freezing of unclaimed royalties

Temporary freezing of funds

Temporary freezing NFTs

Smart contract unable to operate due to lack of token funds

Enabling/disabling notifications

Griefing (e.g. no profit motive for an attacker, but damage to the

users or the protocol)

Theft of gas

Unbounded gas consumption

Contract fails to deliver promised returns, but doesn’t lose value

We make note of issues of no severity that reflect best practice

recommendations or opportunities for optimization, including, but

not limited to, gas optimization, the divergence from standard

coding practices, code readability issues, the incorrect use of

dependencies, insufficient test coverage, or the absence of

documentation or code comments.

Appendix A
Section 5.0

Defense

Security Audit Report

Coffer Network

https://immunefi.com/immunefi-vulnerability-severity-classification-system-v2-3/

16

Thesis Defense Disclaimer

Defense conducts its security audits and other services provided based on agreed-upon and specific

scopes of work (SOWs) with our Customers. The analysis provided in our reports is based solely on the

information available and the state of the systems at the time of review. While Thesis Defense strives to

provide thorough and accurate analysis, our reports do not constitute a guarantee of the project’s security

and should not be interpreted as assurances of error-free or risk-free project operations. It is imperative to

acknowledge that all technological evaluations are inherently subject to risks and uncertainties due to the

emergent nature of cryptographic technologies.

Our reports are not intended to be utilized as financial, investment, legal, tax, or regulatory advice, nor

should they be perceived as an endorsement of any particular technology or project. No third party should

rely on these reports for the purpose of making investment decisions or consider them as a guarantee of

project security.

Links to external websites and references to third-party information within our reports are provided solely

for the user’s convenience. Thesis Defense does not control, endorse, or assume responsibility for the

content or privacy practices of any linked external sites. Users should exercise caution and independently

verify any information obtained from third-party sources.

The contents of our reports, including methodologies, data analysis, and conclusions, are the proprietary

intellectual property of Thesis Defense and are provided exclusively for the specified use of our

Customers. Unauthorized disclosure, reproduction, or distribution of this material is strictly prohibited

unless explicitly authorized by Thesis Defense. Thesis Defense does not assume any obligation to update

the information contained within our reports post-publication, nor do we owe a duty to any third party by

virtue of making these analyses available.

Appendix B
Section 6.0

Defense

Security Audit Report

Coffer Network

	Security Audit Report
	Coffer Network
	Coffer Smart Contracts

	Table of Contents
	About Thesis Defense
	1
Scope
	Technical Scope

	2
Executive Summary
	Schedule
	Overview
	Threat Model
	Secure Implementation
	Tests
	Project Documentation

	3
Key Findings Table
	4
Findings
	increaseAllowance Function Decreases the Allowance
	Location
	Description
	Impact
	Recommendation

	Event Emits an Incorrect Value
	Location
	Description
	Impact
	Recommendation

	Duplicate Events Can be Emitted in wipeFrozenAddress Function
	Location
	Description
	Impact
	Recommendation

	Important Protocol Privileged Addresses Can be Frozen
	Location
	Description
	Impact
	Recommendation
	Verification Status

	Incorrect Use of Access Role in wipeFrozenAddress Function
	Location
	Description
	Impact
	Recommendation

	Address With Zero Balance Can be Frozen
	Location
	Description
	Impact
	Recommendation

	Duplicate Functions
	Location
	Description
	Impact
	Recommendation
	Verification Status

	No Constructor Implemented in Smart Contracts
	Location
	Description
	Impact
	Recommendation

	Implement Custom Errors to Save Gas
	Location
	Description
	Impact
	Recommendation

	Privileged Addresses Can Be Set to Existing Values
	Location
	Description
	Impact
	Recommendation

	Unlock Pragma Version
	Location
	Description
	Impact
	Recommendation

	5
Appendix A
	Severity Rating Definitions

	6
Appendix B
	Thesis Defense Disclaimer

